Structural correlates of functionally distinct X‐cells in the lateral geniculate nucleus of the cat
- 15 February 1988
- journal article
- research article
- Published by Wiley in Journal of Comparative Neurology
- Vol. 268 (3), 448-468
- https://doi.org/10.1002/cne.902680312
Abstract
In the companion paper (Humphrey and Weller, '88), we demonstrated 2 physiologically different groups of X-cells (XL and XN) in the A-laminae of the cat lateral geniculate nucleus. In order to investigate their possible morphological correlates, we iontophoresed horseradish peroxidase intracellularly into physiologically identified XL- and XN-cells and examined their light microscopic appearance. The 11 HRP-labeled XL-cells constituted the smallest relay neurons in the A-laminae, and were similar morphologically. All had small somata (mean soma size = 236 μm2), very thin (< 1.0 μm) axons, few primary dendrites, and narrow, sinuous distal dendrites, which usually formed trees that were oriented perpendicular to laminar borders. The dendrites could be smooth or display beadlike varicosities, hairlike appendages, and/or occasional complex stalked appendages, but their most consistent feature was numerous clusters of grapelike dendritic appendages located at or near dendritic branch points. The 14 labeled XN-cells were structurally more heterogeneous, and they included relay neurons and interneurons. Eight of 11 XN-relay cells differed markedly from the XL-cells. These XN-cells were multipolar neurons with medium to large somata (mean soma size = 365 μm2), small to medium-size axons (1.0–2.0 μm), numerous primary dendrites, and straight distal dendrites that formed radially symmetric trees. The dendrites of the cells were largely smooth, except for occasional spines and/or hairs, and they were devoid of grapelike and other complex appendages. The three other XN-relay neurons had morphologies either similar to XL-cells or intermediate between XL-cells and more simple, multipolar XN-relay cells, but two of these cells had larger somata and axons than most XL-cells. Finally, three XN-cells were intrageniculate interneurons, which possessed small somata (mean soma size = 174 μm2), fine sinuous dendrites covered with beadlike varicosities on stalked appendages, and no obvious axon. These results reveal that, despite minor overlap, there are marked structural differences between XL- and XN-cells. Among the relay cells, these differences relate to soma and axon diameter, dendritic orientation, and the presence or absence of grapelike dendritic appendages. Our finding that interneurons were strongly excited at short latencies by spot onset supports the hypothesis (Mastronarde, '87a; Humphrey and Weller, '88) that such interneurons provide the major inhibitory input to XL-cells, and that this input is important in generating the spot-induced early dips in XL-cell discharge.Keywords
This publication has 41 references indexed in Scilit:
- Functionally distinct groups of X‐cells in the lateral geniculate nucleus of the catJournal of Comparative Neurology, 1988
- Localization of γ‐aminobutyric acid (GABA) in type 3 cells and demonstration of their source to f2 terminals in the cat lateral geniculate nucleus: A golgi‐electron‐microscopic GABA‐immunocytochemical studyJournal of Comparative Neurology, 1986
- Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the catNature, 1985
- Understanding the intrinsic circuitry of the cat’s lateral geniculate nucleus: electrical properties of the spine-triad arrangementProceedings of the Royal Society of London. B. Biological Sciences, 1985
- Projection patterns of individual X‐ and Y‐cell axons from the lateral geniculate nucleus to cortical area 17 in the catJournal of Comparative Neurology, 1985
- The percentage of interneurons in the dorsal lateral geniculate nucleus of the cat and observations on several variables that affect the sensitivity of horseradish peroxidase as a retrograde markerJournal of Comparative Neurology, 1983
- The influence of GABAergic inhibitory processes on the receptive field structure of X and Y cells in cat dorsal lateral geniculate nucleus (dLGN)Brain Research, 1983
- A quantitative electron-microscopical study of the postnatal development of the lateral geniculate nucleus in normal kittens and in kittens with eyelid sutureProceedings of the Royal Society of London. B. Biological Sciences, 1980
- Cortical projections of the lateral geniculate nucleus in the catJournal of Comparative Neurology, 1980
- A Golgi study of the class V cell in the visual thalamus of the catJournal of Comparative Neurology, 1979