Polynomial Approximation of Functions in Sobolev Spaces

Abstract
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.