New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene

Abstract
The entire mitochondrial cytochrome b (cyt b) gene was compared for 11 species of the artiodactyl family Cervidae, representing all living subfamilies, i.e., the antlered Cervinae (Cervus elaphus, C. nippon, Dama dama), Muntiacinae (Muntiacus reevesi), and Odocoileinae (Odocoileus hemionus, Mazama sp., Capreolus capreolus, C. pygargus, Rangifer tarandus, Alces alces); and the antlerless Hydropotinae (Hydropotes inermis). Phylogenetic analyses using Tragulidae, Antilocapridae, Giraffidae and Bovidae as outgroups provide evidence for three multifurcating principal clades within the monophyletic family Cervidae. First, Cervinae and Muntiacus are joined in a moderately-to-strongly supported clade of Eurasian species. Second, Old World Odocoileinae (Capreolus and Hydropotes) associate with the Holarctic Alces. Third, New World Odocoileinae (Mazama and Odocoileus) cluster with the Holarctic Rangifer. The combination of mitochondrial cyt b and nuclear k-casein sequences increases the robustness of these three clades. The Odocoileini + Rangiferini clade is unambiguously supported by a unique derived cranial feature, the expansion of the vomer which divides the choana. Contrasting with current taxonomy, Hydropotes is not the sister group of all the antlered deers, but it is nested within the Odocoileinae. Therefore, Hydropotes lost the antlers secondarily. Thus, the mitochondrial cyt b phylogeny splits Cervidae according to plesiometacarpal (Cervinae + Muntiacinae) versus telemetacarpal (Odocoileinae + Hydropotinae) conditions, and suggests paraphyly of antlered deer.