Two‐Photon Singlet Oxygen Microscopy: The Challenges of Working with Single Cells

Abstract
A microscope is described in which singlet molecular oxygen, O2(a1deltag), is produced in a femtoliter focal volume via a nonlinear two-photon photosensitized process, and the 1270 nm phosphorescence from this population of O2(a1deltag) is detected in a photon counting experiment. Although two-photon excitation of a sensitizer is less efficient than excitation by a one-photon process, nonlinear excitation has several distinct advantages with respect to the spatial resolution accessible. Pertinent aspects of this two-photon O2(a1deltag) microscope were characterized using bulk solutions of photosensitizers. These data were compared to those obtained from a single biological cell upon linear one-photon excitation of a sensitizer incorporated in the cell. On the basis of the results obtained, we outline the challenges of using nonlinear optical techniques to create O2(aldeltag) at the single cell level and to then optically detect the O2(aldeltag) thus produced in a time-resolved experiment.

This publication has 53 references indexed in Scilit: