Stable expression of sialyl-Tn antigen in T47-D cells induces a decrease of cell adhesion and an increase of cell migration

Abstract
Sialyl-Tn is a carbohydrate antigen overexpressed in several epithelial cancers including breast cancer, and usually associated with poor prognosis. Sialyl-Tn is synthesized by a CMP-Neu5Ac: GalNAc α2,6-sialyltransferase: ST6GalNAc I, which catalyzes the transfer of a sialic acid residue in α2,6-linkage to the GalNAcα1-O-Ser/Thr structure. The resulting disaccharide (Neu5Acα2-6GalNAcα1-O-Ser/Thr) cannot be further elongated and sialyl-Tn expression results therefore in a shortening of the O-glycan chains. However, usual breast cancer cell lines express neither ST6GalNAc I nor sialyl-Tn antigen. We have previously shown that stable transfection of MDA-MB-231 cells with the hST6GalNAc I cDNA induces the sialyl-Tn antigen expression at the cell surface and leads to a decreased cell growth and an increased cell migration. We describe herein the generation of new T47-D clones expressing sialyl-Tn antigen after hST6GalNAc I cDNA stable transfection. sialyl-Tn antigen is carried by several high molecular weight membrane bound O-glycoproteins, including MUC1. We show that sialyl-Tn expression induces a decrease of cell growth and adhesion, and an increase of cell migration in sialyl-Tn positive clones compared to mock transfected cells. These observations show that the alteration of the O-glycans pattern is sufficient to modify the biological features of cancer cells. These T47-D sialyl-Tn expressing clones might allow further in vivo investigation to determine precisely the impact of such O-glycosylation modifications on breast cancer development.