Structures, energetics, and spectra of aqua-cesium (I) complexes: An ab initio and experimental study

Abstract
The design of cesium-selective ionophores must include the nature of cesium-water interactions. The authors have carried out extensive ab initio and density functional theory calculations of hydrated cesium cations to obtain reasonably accurate energetics, thermodynamic quantities, and IR spectra. An extensive search was made to find the most stable structures. Since water⋯water interactions are important in the aqua-Cs+ clusters, the authors investigated the vibrational frequency shifts as a function of the number of water molecules and the frequency characteristics with and without the presence of outer-shell water molecules. The predicted vibrational frequencies were then compared with the infrared photodissociation spectra of argon-tagged hydrated cesium cluster ions. This comparison allowed the identification of specific hydrogen-bonding structures present in the experimental spectra.