The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing
Open Access
- 10 January 1998
- journal article
- Published by The Company of Biologists in Journal of Cell Science
- Vol. 111 (19), 2911-2922
- https://doi.org/10.1242/jcs.111.19.2911
Abstract
Suprastimulation of pancreatic acinar cells with specific agonists inhibits zymogen secretion and induces the formation of large basolateral blebs. Currently the molecular mechanisms that mediate this dramatic morphologic response are undefined. Further, it is unclear if blebbing represents a terminal or reversible event. Using computer-enhanced video microscopy of living acini we have found that these large blebs form rapidly (within 2–3 minutes) and exhibit ameboid undulations. They are induced by small increases in agonist concentration and require an energy-dependent phosphorylation event. Remarkably, the blebs are rapidly absorbed when agonist levels are reduced, indicating that blebbing is a reversible response to a physiological stimulus, not a terminal event. Morphological methods show that these dramatic changes in cell shape are accompanied by a marked reorganization of actin and myosin II at the basolateral domain. During 30 minutes of suprastimulation, both basolateral actin and myosin II gradually increase to form a ring centered at the necks of the blebs. Immunocytochemical and biochemical studies with a phospho-specific antibody to the myosin regulatory light chain reveal an activation of myosin II in suprastimulated acini that is completely absent in resting cells. Studies using cytoskeletal antagonistic drugs indicate that bleb formation and motility require actin remodeling concomitant with an activation of myosin II. This aberrant activation and reorganization of the actin-myosin cytoskeleton is likely to have detrimental effects on acinar cell function. Additionally, this mechanism of bleb formation may be conserved among other forms of physiological blebbing events.Keywords
This publication has 47 references indexed in Scilit:
- Changes in kinesin distribution and phosphorylation occur during regulated secretion in pancreatic acinar cellsEuropean Journal of Cell Biology, 1998
- Effects of cholecystokinin and carbachol on membrane fluidity in pancreatic aciniDigestive Diseases and Sciences, 1996
- Myosin is involved in postmitotic cell spreading.The Journal of cell biology, 1995
- Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells.The Journal of cell biology, 1995
- Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosisNeuron, 1995
- Actin-dependent motile forces and cell motilityCurrent Opinion in Cell Biology, 1994
- Effects of caerulein on the apical cytoskeleton of the pancreatic acinar cell.Journal of Clinical Investigation, 1990
- Effects of modulators of myosin light-chain kinase activity in single smooth muscle cellsNature, 1989
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970
- Mitosis in cultures of newt tissuesExperimental Cell Research, 1955