Influence of Fibrinogen Split Products on Platelets

Abstract
Breakdown products of fibrinogen and fibrin can play a role in hemostasis and also may be of consequence in thrombosis. β2 fibrinogen derivative D is an electropositive terminal proteolysis product of fibrinolysis which has the ability to aggregate platelets. The normal plasma concentration of such nonclottable fibrinogen relatives is 0.2 mg/ml. During fibrinolysis this concentration may reach 5 mg/ml plasma. Addition of β 2 fibrinogen D (raising the plasma concentration 0.1 to 5 mg/ml) either in vivo or in vitro induced platelet aggregations. Moreover, alterations in platelet morphology occurred which were obvious by electron microscopy. Platelet depletion was a consistent response to the infusion of purified β2 fibrinogen D (8 to 55 mg/kg body weight) into dogs. Circulating platelets decreased as much as 85% but were only temporarily aggregated and reappeared in the circulation within 1 to 5 hrs. Small platelet aggregates circulated while large aggregates were trapped in the microcirculation. Thrombin was not responsible for the platelet aggregations as neither prothrombin nor clottable fibrinogen were changed significantly. The transient nature and morphological features of the platelet response according to microscopic criteria were prominent during and after infusion of β2 fibrinogen D. In vitro studies included 3 systems; washed platelets, platelet rich plasma and whole blood. Positive results were obtained with all, but platelets in whole blood were most responsive. The magnitude of platelet aggregation and morphology correlated with the concentration of β2 fibrinogen D. Platelet aggregation induced by ADP (10~5 mg/ml) was compared with that induced by β2 fibrinogen D (0.09 to 0.72 mg/ml). With either reagent aggregates were of dendritic forms. Combination of the 2 reagents was additive but did not further change the morphology. Additional factors seem necessary for development of viscous metamorphosis. * Aided by NIH research grant HE 03447 from US Public Health Service and the Michigan Heart Association.