Abstract
We tested the hypothesis that histone mRNA turnover is accelerated in the presence of free histone proteins. In an in vitro mRNA decay system, histone mRNA was degraded four- to sixfold faster in reaction mixtures containing core histones and a cytoplasmic S130 fraction than in reaction mixtures lacking these components. The decay rate did not change significantly when histones or S130 was added separately, suggesting either that the histones were modified and thereby activated by S130 or that additional factors besides histones were required. RecA, SSB (single-stranded binding), and histone proteins all formed complexes with histone mRNA, but only histones induced accelerated histone mRNA turnover. Therefore, the effect was not the result of random RNA-protein interactions. Moreover, histone proteins did not induce increased degradation of gamma globin mRNA, c-myc mRNA, or total poly(A)- or poly(A)+ polysomal mRNAs. This autoregulatory mechanism is consistent with the observed accumulation of cytoplasmic histone proteins in cells after DNA synthesis stops, and it can account, in part, for the rapid disappearance of histone mRNA at the end of S phase.