Abstract
A biochemical hallmark of cells undergoing programmed cell death, or apoptosis, is the endonucleolytic cleavage of genomic DNA at internucleosomal sites. To study further the nuclease involved in this process, an assay system was developed to measure internucleosomal DNA degradation. Micrococcal nuclease (MNase), a bacterial enzyme that cleaves chromatin at internucleosomal intervals, was used to validate the assay procedure. Thymocyte nuclear proteins obtained from glucocorticoid-treated chickens, a source of internucleosomal DNA-degrading activity, were incubated with chicken red blood cell nuclei, and genomic DNA was subsequently extracted and analyzed by agarose gel electrophoresis. Generation of internucleosomal DNA degradation products by the thymocyte protein extract required ATP and was both time and protein concentration dependent. This nuclease activity could be inhibited by EDTA, EGTA, alkylating agents, or heat denaturation. Addition of purified proteinases, RNases, or other types of nucleases to the assay failed to generate discrete internucleosomal lengths of DNA, thus confirming the nuclease specificity of this assay. On the basis of these data, we believe that this assay system will be instrumental in isolating and characterizing the nuclease(s) associated with apoptosis.