NMDA Receptor Activation Mediates Copper Homeostasis in Hippocampal Neurons
Top Cited Papers
Open Access
- 5 January 2005
- journal article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 25 (1), 239-246
- https://doi.org/10.1523/jneurosci.3699-04.2005
Abstract
Copper is an essential transition metal with a critical role in the CNS. This requirement is underscored by Menkes disease, a fatal neurodegenerative disorder of childhood resulting from the absence or dysfunction of a copper-transporting P-type ATPase. To elucidate the cell biological mechanisms of copper homeostasis in the CNS, a polyclonal antisera against Menkes ATPase was used in immunoblot and immunohistochemical studies, demonstrating abundant expression of this copper transporter in hippocampal neurons. Consistent with this observation, immunofluorescent analysis revealed Menkes ATPase in the late Golgi of hippocampal neurons in primary culture. Glutamate receptor activation was found to result in the rapid and reversible trafficking of Menkes ATPase to neuronal processes, independent of the intracellular copper concentration and specific for activation of the NMDA- but not AMPA/kainate-type glutamate receptors. Metabolic studies revealed that trafficking of Menkes ATPase after NMDA receptor activation is associated with rapid release of copper from hippocampal neurons. Menkes ATPase is directly required for this copper efflux, because similar studies in hippocampal neurons derived from mice lacking a functional Menkes ATPase demonstrated no copper release. Together, these data reveal a critical role for Menkes ATPase in the availability of an NMDA receptor-dependent, releasable pool of copper in hippocampal neurons and demonstrate a unique mechanism linking copper homeostasis and neuronal activation within the CNS.Keywords
This publication has 37 references indexed in Scilit:
- Copper Chelation Delays the Onset of Prion DiseaseJournal of Biological Chemistry, 2003
- Hepatic Copper Metabolism: Insights From Genetic DiseaseHepatology, 2003
- Translocation of CaM kinase II to synaptic sites in vivoNature Neuroscience, 2003
- The Yin and Yang of NMDA receptor signallingTrends in Neurosciences, 2003
- Undetectable Intracellular Free Copper: The Requirement of a Copper Chaperone for Superoxide DismutaseScience, 1999
- Suppression of long-term potentiation in hippocampal slices by copperHippocampus, 1997
- Copper Modulation of NMDA Responses in Mouse and Rat Cultured Hippocampal NeuronsEuropean Journal of Neuroscience, 1996
- A murine model of Menkes disease reveals a physiological function of metallothioneinNature Genetics, 1996
- Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitabilityNeuroscience Letters, 1989
- Zinc Selectively Blocks the Action of N -Methyl-D-Aspartate on Cortical NeuronsScience, 1987