Abstract
Consider a background state which consists of a spatially uniform chemically reactive mixture in a general state of disequilibrium. The analytical method of characteristics is used to show that a plane finite amplitude disturbance propagates through this system at the frozen sound speed and, if the degree of disequilibrium is sufficient, is amplified by the chemical reaction. Some comments are made about the time to shock-wave formation and its relation to the homogeneous explosion ignition time, and also about expansion waves, which are found to have a tendency towards fixed-strength ‘quenching waves’, their strength being proportional to the extent of the ambient disequilibrium.

This publication has 3 references indexed in Scilit: