Adaptive fuzzy systems for backing up a truck-and-trailer
- 1 March 1992
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Neural Networks
- Vol. 3 (2), 211-223
- https://doi.org/10.1109/72.125862
Abstract
Fuzzy control systems and neural-network control systems for backing up a simulated truck, and truck-and-trailer, to a loading dock in a parking lot are presented. The supervised backpropagation learning algorithm trained the neural network systems. The robustness of the neural systems was tested by removing random subsets of training data in learning sequences. The neural systems performed well but required extensive computation for training. The fuzzy systems performed well until over 50% of their fuzzy-associative-memory (FAM) rules were removed. They also performed well when the key FAM equilibration rule was replaced with destructive, or ;sabotage', rules. Unsupervised differential competitive learning (DCL) and product-space clustering adaptively generated FAM rules from training data. The original fuzzy control systems and neural control systems generated trajectory data. The DCL system rapidly recovered the underlying FAM rules. Product-space clustering converted the neural truck systems into structured sets of FAM rules that approximated the neural system's behavior.Keywords
This publication has 6 references indexed in Scilit:
- Differential competitive learning for centroid estimation and phoneme recognitionIEEE Transactions on Neural Networks, 1991
- Stochastic competitive learningIEEE Transactions on Neural Networks, 1991
- Unsupervised learning in noiseIEEE Transactions on Neural Networks, 1990
- The truck backer-upper: an example of self-learning in neural networksPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1989
- Fuzzy entropy and conditioningInformation Sciences, 1986
- Robust StatisticsWiley Series in Probability and Statistics, 1981