Paper-based assays for urine analysis

Abstract
A transformation of the healthcare industry is necessary and imminent: hospital-centered, reactive care will soon give way to proactive, person-centered care which focuses on individuals' well-being. However, this transition will only be made possible through scientific innovation. Next-generation technologies will be the key to developing affordable and accessible care, while also lowering the costs of healthcare. A promising solution to this challenge is low-cost continuous health monitoring; this approach allows for effective screening, analysis, and diagnosis and facilitates proactive medical intervention. Urine has great promise for being a key resource for health monitoring; unlike blood, it can be collected effortlessly on a daily basis without pain or the need for special equipment. Unfortunately, the commercial rapid urine analysis tests that exist today can only go so far—this is where the promise of microfluidic devices lies. Microfluidic devices have a proven record of being effective analytical devices, capable of controlling the flow of fluid samples, containing reaction and detection zones, and displaying results, all within a compact footprint. Moving past traditional glass- and polymer-based microfluidics, paper-based microfluidic devices possess the same diagnostic ability, with the added benefits of facile manufacturing, low-cost implementation, and disposability. Hence, we review the recent progress in the application of paper-based microfluidics to urine analysis as a solution to providing continuous health monitoring for proactive care. First, we present important considerations for point-of-care diagnostic devices. We then discuss what urine is and how paper functions as the substrate for urine analysis. Next, we cover the current commercial rapid tests that exist and thereby demonstrate where paper-based microfluidic urine analysis devices may fit into the commercial market in the future. Afterward, we discuss various fabrication techniques that have been recently developed for paper-based microfluidic devices. Transitioning from fabrication to implementation, we present some of the clinically implemented urine assays and their importance in healthcare and clinical diagnosis, with a focus on paper-based microfluidic assays. We then conclude by providing an overview of select biomarker research tailored towards urine diagnostics. This review will demonstrate the applicability of paper-based assays for urine analysis and where they may fit into the commercial healthcare market.
Funding Information
  • National Science Foundation (DGE-1247393)
  • American Heart Association (15SDG25080056)
  • National Institutes of Health