Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored Noise

Abstract
Singular systems (or singular spectrum) analysis (SSA) was originally proposed for noise reduction in the analysis of experimental data and is now becoming widely used to identify intermittent or modulated oscillations in geophysical and climatic time series. Progress has been hindered by a lack of effective statistical tests to discriminate between potential oscillations and anything but the simplest form of noise, that is, “white” (independent, identically distributed) noise, in which power is independent of frequency. The authors show how the basic formalism of SSA provides a natural test for modulated oscillations against an arbitrary “colored noise” null hypothesis. This test, Monte Carlo SSA, is illustrated using synthetic data in three situations: (i) where there is prior knowledge of the power-spectral characteristics of the noise, a situation expected in some laboratory and engineering applications, or when the “noise” against which the data is being tested consists of the output of an i... Abstract Singular systems (or singular spectrum) analysis (SSA) was originally proposed for noise reduction in the analysis of experimental data and is now becoming widely used to identify intermittent or modulated oscillations in geophysical and climatic time series. Progress has been hindered by a lack of effective statistical tests to discriminate between potential oscillations and anything but the simplest form of noise, that is, “white” (independent, identically distributed) noise, in which power is independent of frequency. The authors show how the basic formalism of SSA provides a natural test for modulated oscillations against an arbitrary “colored noise” null hypothesis. This test, Monte Carlo SSA, is illustrated using synthetic data in three situations: (i) where there is prior knowledge of the power-spectral characteristics of the noise, a situation expected in some laboratory and engineering applications, or when the “noise” against which the data is being tested consists of the output of an i...