Abstract
Small (10 residue) C-terminal deletions of PBP5 cause release of this Inner membrane protein into the periplasm, indicating disruption of the membrane binding domain. To define the extent of the membrane anchoring domain, oligonucleotide-directed mutagenesis was used to introduce both single amino acid changes and novel restriction sites into the DN A, allowing subsequent construction of precise internal deletions. The 10 C-terminal amino acid residues possess very weak membrane anchoring potential. By extending the sequence to 18 residues membrane binding equivalent to that of authentic PBP5 was achieved. A proline substitution in this region, breaking a potential α-helix, also disrupts the membrane binding domain. These results are discussed with respect to the amphi-philicity of the C-terminal sequence when arranged in an α-helix.