Abstract
The East African jet, also popularly called the Somali jet, is viewed as a western boundary current of the East African highlands. Inertial and Coriolis forces. bottom friction and orography are believed important in the jet dynamics. A barotropic, primitive equation model on an equatorial beta plane is used to test this hypothesis. The flow is driven by a mass source term representing the subsidence in the southern branch of the monsoon Hadley cell. Steady, zonally symmetric solutions indicate that the combination of inertial forces, surface friction and weak subsidence can provide an adequate description of the southeast trades over the South Indian Ocean. It is deduced that, in order for the easterly flow to change into westerlies south of the equator, convergence of the flow must occur at the transition latitude, and the meridional mass flux must vanish. A two-dimensional numerical model successfully simulates most of the major large-scale features of the climatological low-level flow over th... Abstract The East African jet, also popularly called the Somali jet, is viewed as a western boundary current of the East African highlands. Inertial and Coriolis forces. bottom friction and orography are believed important in the jet dynamics. A barotropic, primitive equation model on an equatorial beta plane is used to test this hypothesis. The flow is driven by a mass source term representing the subsidence in the southern branch of the monsoon Hadley cell. Steady, zonally symmetric solutions indicate that the combination of inertial forces, surface friction and weak subsidence can provide an adequate description of the southeast trades over the South Indian Ocean. It is deduced that, in order for the easterly flow to change into westerlies south of the equator, convergence of the flow must occur at the transition latitude, and the meridional mass flux must vanish. A two-dimensional numerical model successfully simulates most of the major large-scale features of the climatological low-level flow over th...