Characterization of a CD44/CD122int Memory CD8 T Cell Subset Generated under Sterile Inflammatory Conditions

Abstract
Most memory CD8 T cell subsets that have been hitherto defined are generated in response to infectious pathogens. In this study, we have characterized the CD8 T cells that survive priming conditions, devoid of pathogen-derived danger signals. In both a TCR-transgenic model and a model of contact hypersensitivity, we show that the priming of naive CD8 T cells under sterile inflammatory conditions generates memory. The corresponding memory CD8 T cells can be identified by their intermediate expression levels of CD44 and CD122. We also show that CD44/122int memory CD8 T cells spontaneously develop in wild type mice and that they display intermediate levels of several other memory traits including functional (IFN-γ secretion capacity, CCL5 messenger stores), phenotypic, and molecular (T-bet and eomesodermin expression levels) features. We finally show that they correspond to an early differentiation stage and can further differentiate in CD44/122high memory T cells. Altogether, our results identify a new memory CD8 T cell subset that is generated under sterile inflammatory conditions and involved in the recall contact hypersensitivity reactions that are responsible for allergic contact dermatitis.