Transport of carbon dioxide and methane in glassy aromatic polyesters

Abstract
Solubilities and diffusivities of CO2 and CH4 in two aromatic polyesters [Ardel® poly(bisphenol A phthalate) (PAr) and poly(phenolphthalein phthalate) (PPha)] and one polycarbonate [Lexan® (PC)], generated from independent sorption and permeation measurements at 35°C and up to 25 atm, are compared. The permeability ratio for CO2 over CH4, at 20 atm and 35°C, ranges from 24 for PC, to 21 for PAr, and 27 for PPha. However, the permeability of PPha and PAr are 40 and 120% higher, respectively, than that of PC. Less than 21% change in the gas diffusivity was observed; therefore, a major portion of the observed higher permeability of PPha and PAr is attributed to an increase in the gas solubility. These data are interpreted qualitatively in terms of changes in the calculated packing density, chain torsional mobility of the polymer, and gas‐polymer attraction.