Action of 50 Hz magnetic fields on cyclic AMP and intercellular communication in monolayers and spheroids of mammalian cells

Abstract
To investigate the influence of physiological parameters such as cell density and three-dimensional cell contact on the biological action of a 2 mT/50 Hz magnetic field, mouse fibroblasts were exposed as monolayers and as multicellular spheroids. Changes in cyclic AMP content of cells and alterations in gap junction-mediated intercellular communication were measured immediately after 5 min of exposure to the field. In monolayers of intermediate cell density (1 × 105 cells/cm2), the field treatment caused an increase in cAMP to 121% of the control level, whereas, at 3 × 105 cells/cm2 (near confluence), a decrease to 88% of the unexposed cells was observed. Furthermore, field exposure stimulated gap-junction communication to 160% of the control level as determined by Lucifer yellow dye exchange. In spheroids, alterations in the radial profile of cellular cAMP were observed that were due both to field-induced local cAMP changes and to increased gap-junction permeability for this second messenger, the latter causing radial cAMP gradients to be flattened. The results indicate a strong dependence of field action on physiological parameters of the system exposed.