Effects of Substrate Biodegradability on the Mass and Activity of the Associated Estuarine Microbiota

Abstract
Multiple biochemical assays of microbial mass and activities were applied to the estuarine detrital microbiota colonizing morphologically similar polyvinyl chloride needles and needles from slash pine (Pinus elliottii). Biodegradable pine needles consistently showed 2- to 10-fold higher values of extractable adenosine 5′-triphosphate, rates of oxygen utilization, activities of alkaline phosphatase and phosphodiesterase, and the mucopeptide cell wall component muramic acid than did the polyvinyl chloride needles, during a 14-week incubation in a semitropical estuary. The higher activities by the microbiota of the biodegradable substrate correlated with estimates of the microbial density from scanning electron microscopy. The microbial community associated with the nondegradable substrate showed minimal activity of β-d-galactosidase, β-d-glucosidase, and α-d-mannosidase in contrast to the biota of the degradable substrate, which showed 10- to 100-fold higher activities of these glycoesterases. These enzymes logically could be involved in catabolism of the carbohydrate polymers of the detritus. Assuming equivalent rates of predation, a surface that is also a utilizable substrate supports a three- to fivefold more active microbial population.