Molecular Doping of Graphene
Top Cited Papers
- 18 December 2007
- journal article
- letter
- Published by American Chemical Society (ACS) in Nano Letters
- Vol. 8 (1), 173-177
- https://doi.org/10.1021/nl072364w
Abstract
Graphene is considered as one of the most promising materials for post silicon electronics, as it combines high electron mobility with atomic thickness [Novoselov et al. Science2004, 306, 666−669. Novoselov et al. Proc. Natl. Acad. Sci. U.S.A.2005, 102, 10451−10453]. The possibility of chemical doping and related excellent chemical sensor properties of graphene have been demonstrated experimentally [Schedin et al. Nat. Mater.2007, 6, 652−655], but a microscopic understanding of these effects has been lacking, so far. In this letter, we present the first joint experimental and theoretical investigation of adsorbate-induced doping of graphene. A general relation between the doping strength and whether adsorbates are open- or closed-shell systems is demonstrated with the NO2 system: The single, open shell NO2 molecule is found to be a strong acceptor, whereas its closed shell dimer N2O4 causes only weak doping. This effect is pronounced by graphene's peculiar density of states (DOS), which provides an ideal situation for model studies of doping effects in semiconductors. We show that this DOS is ideal for “chemical sensor” applications and explain the recently observed [Schedin et al. Nat. Mater.2007, 6, 652−655] NO2 single molecule detection.Keywords
All Related Versions
This publication has 13 references indexed in Scilit:
- Detection of individual gas molecules adsorbed on grapheneNature Materials, 2007
- Two-dimensional atomic crystalsProceedings of the National Academy of Sciences, 2005
- Electric Field Effect in Atomically Thin Carbon FilmsScience, 2004
- NO 2 and CO gas adsorption on carbon nanotubes: Experiment and theoryThe Journal of Chemical Physics, 2003
- Gas molecule adsorption in carbon nanotubes and nanotube bundlesNanotechnology, 2002
- Chemical control of nanotube electronicsNanotechnology, 2000
- Nanotube Molecular Wires as Chemical SensorsScience, 2000
- Projector augmented-wave methodPhysical Review B, 1994
- Norm-conserving and ultrasoft pseudopotentials for first-row and transition elementsJournal of Physics: Condensed Matter, 1994
- NO2 adsorption on graphite at 90 KChemical Physics Letters, 1990