Variation in hydration forces between neutral phospholipid bilayers: evidence for hydration attraction
- 4 October 1988
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 27 (20), 7711-7722
- https://doi.org/10.1021/bi00420a021
Abstract
It is now generally recognized that hydration forces dominate close interactions of lipid hydrophilic surfaces. The commonality of their characteristics has been reasonably established. However, differences in measured net repulsion, particularly evident when phosphatidylethanolamine (PE) and phosphatidylcholine (PC) bilayers are compared, suggest there exists a variety of behavior wider than expected from earlier models of hydration and fluctuation repulsion balanced by van der Waals attraction. To find a basis for this diverse behavior, we have looked more closely at measured structural parameters, degrees of hydration, and interbilayer repulsive forces for the lamellar phases of the following lipids: 1-palmitoyl-2-oleoyl-PE (POPE), egg PE, transphosphatidylated egg PE (egg PE-T), mono- and dimethylated egg PE-T (MMPE and DMPE), 1-stearoyl-2-oleoyl-PC (SOPC), and mixtures of POPE and SOPC. POPE and SOPC bilayers differ not only in their maximum degrees of hydration but also in the empirical hydration force coefficients and decay lengths that characterize their interaction. When mixed with POPE, SOPC effects sudden and disproportionate increases in hydration. POPE, egg PE, and egg PE-T differ in their degree of hydration, molecular area, and hydration repulsion. A single methylation of egg PE-T almost completely converts its hydration and bilayer repulsive properties to those of egg PC; little progression of hydration is seen with successive methylations. In order to reconcile these observations with the conventional scheme of balancing interbilayer hydration and fluctuation-enhanced repulsion with van der Waals attraction, it is necessary to relinquish the fundamental idea that the decay of hydration forces is a constant determined by the properties of the aqueous medium. Alternatively, one can retain that fundamental idea if one recognizes the possibility that polar group hydration has an attractive component to it. In the latter view, that attractive component originates from interbilayer hydrogen-bonded water bridges between apposing bilayer surfaces, arising from correlation of zwitterionic or other complementary polar groups or from factors that affect polar group solubility. The same Marcelja and Radic formalism that accounts so well for the repulsive component also leads to an estimate of the attractive one. We suggest that the full range of degrees of hydration and of interbilayer spacings observed for different neutral bilayers results in part from variable contributions of the attractive and repulsive hydration components. The extremes are exemplified by the dominance of attraction between PE bilayers with crystalline hydrocarbon chains and the dominance of repulsion and full hydration of melted PC bilayers. Within the variable hydration of the PE''s with melted chains, one sees evidence of variable hydration attraction. With or without the postulated attraction though, good estimates of adhesion energy can be obtained. It is necessary therefore to make other critical tests to distinguish the alternatives.This publication has 2 references indexed in Scilit: