Centric Heterochromatin and the Efficiency of Achiasmate Disjunction in Drosophila Female Meiosis

Abstract
The chromosomal requirements for achiasmate (nonexchange) homolog disjunction in Drosophila female meiosis I have been identified with the use of a series of molecularly defined minichromosome deletion derivatives. Efficient disjunction requires 1000 kilobases of overlap in the centric heterochromatin and is not affected by homologous euchromatin or overall size differences. Disjunction efficiency decreases linearly as heterochromatic overlap is reduced from 1000 to 430 kilobases of overlap. Further observations, including rescue experiments with nod kinesin-like protein transgenes, demonstrate that heterochromatin does not act solely to promote chromosome movement or spindle attachment. Thus, it is proposed that centric heterochromatin contains multiple pairing elements that act additively to initiate or maintain the proper alignment of achiasmate chromosomes in meiosis I. How heterochromatin could act to promote chromosome pairing is discussed here.