Echinacoside and Caffeoyl Conjugates Protect Collagen from Free Radical-Induced Degradation: A Potential Use ofEchinaceaExtracts in the Prevention of Skin Photodamage

Abstract
The protective effect of caffeoyl derivatives (echinacoside, chlorogenic acid, chicoric acid, cynarine, and caffeic acid, typical constituents of Echinacea species) on the free radical-induced degradation of Type III collagen has been investigated. The macro-molecule was exposed to a flux of oxygen radicals (superoxide anion and hydroxyl radical) generated by the xanthine/xanthine oxidase/Fe2+/EDTA system and its degradation assessed qualitatively by SDS-PAGE and quantitatively as the amount of soluble peptides (according to the 4-hydroxyproline method) released from native collagen after oxidative stress. The SDS-PAGE pattern of native collagen is markedly modified by free radical attack, with formation of a great number of peptide fragments with molecular masses below 97 kDa: in the presence of µM concentrations of echinacoside, there is a complete recovery of the native profile. Collagen degradation was, in fact, dose-dependently inhibited by all the compounds, with the following order of potency: echinacoside ≍ chicoric acid > cynarine ≍ caffeic acid > chlorogenic acid, with IC50 ranging from 15 to 90 µM. These results indicate that this representative class of polyphenols of Echinacea species protects collagen from free radical damage through a scavenging effect on reactive oxygen species and/or C-, N-, S-centered secondary radicals, and provide an indication for the topical use of extracts from Echinacea species for the prevention/treatment of photodamage of the skin by UVA/UVB radiation, in which oxidative stress plays a crucial role.