A vast literature in statistics, biometrics, and econometrics is concerned with the analysis of binary and polychotomous response data. The classical approach fits a categorical response regression model using maximum likelihood, and inferences about the model are based on the associated asymptotic theory. The accuracy of classical confidence statements is questionable for small sample sizes. In this article, exact Bayesian methods for modeling categorical response data are developed using the idea of data augmentation. The general approach can be summarized as follows. The probit regression model for binary outcomes is seen to have an underlying normal regression structure on latent continuous data. Values of the latent data can be simulated from suitable truncated normal distributions. If the latent data are known, then the posterior distribution of the parameters can be computed using standard results for normal linear models. Draws from this posterior are used to sample new latent data, and t...