Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab

Abstract
1. The lateral pyloric (LP) neuron is an important component of the network that generates the pyloric rhythm of the stomatogastric ganglion (STG) and is a direct target of many modulatory inputs to the STG. Our aim in this and the subsequent two papers is to describe the conductances present in this cell and to understand the role these conductances play in shaping the activity of the neuron. 2. LP neurons were studied in two-electrode voltage clamp (TEVC) in a saline solution containing tetrodotoxin (TTX) and picrotoxin (PTX) to isolate them pharmacologically from presynaptic inputs. 3. We identified six voltage-dependent ionic conductances. These include three outward currents that resemble a delayed rectifier current, a Ca(2+)-activated K+ current and an A-current similar to those seen in many other preparations. LP neurons show three inward currents, a fast TTX-sensitive current, a hyperpolarization-activated inward current, and a Ca2+ current.