Homogeneity of active demyelinating lesions in established multiple sclerosis
Top Cited Papers
- 29 January 2008
- journal article
- research article
- Published by Wiley in Annals of Neurology
- Vol. 63 (1), 16-25
- https://doi.org/10.1002/ana.21311
Abstract
Objective Four different patterns of demyelination have been described in active demyelinating lesions of multiple sclerosis (MS) patients that were biopsied shortly after disease onset. These patterns were suggested to represent heterogeneity of the underlying pathogenesis. The aim of this study was to determine whether lesion heterogeneity also exists in an unselected collection of autopsy material from patients with established MS. Methods All MS brain tissue available in the VU Medical Center was assessed for the presence of active demyelinating lesions using magnetic resonance imaging–guided sampling and immunohistochemistry. Tissue blocks containing active demyelinating lesions were evaluated for the presence of complement and antibody deposition, oligodendrocyte apoptosis, differential loss of myelin proteins, and hypoxia‐like damage using histology, immunohistochemistry, and confocal microscopy. Blocks with active demyelinating lesions were compared with blocks with active (nondemyelinating) and inactive lesions. Results Complement and antibodies were consistently associated with macrophages in areas of active demyelination. Preferential loss of myelin proteins, extensive hypoxia‐like damage, and oligodendrocyte apoptosis were absent or rare. This pattern was observed in all tissue blocks containing active demyelinating lesions; lesion heterogeneity between patients was not found. Interpretation The immunopathological appearance of active demyelinating lesions in established MS is uniform. Initial heterogeneity of demyelinating lesions in the earliest phase of MS lesion formation may disappear over time as different pathways converge in one general mechanism of demyelination. Consistent presence of complement, antibodies, and Fcγ receptors in phagocytic macrophages suggests that antibody‐ and complement‐mediated myelin phagocytosis is the dominant mechanism of demyelination in established MS. Ann Neurol 2008;63:16–25Keywords
This publication has 31 references indexed in Scilit:
- Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosisProceedings of the National Academy of Sciences, 2006
- Clinical course, pathological correlations, and outcome of biopsy proved inflammatory demyelinating diseaseJournal of Neurology, Neurosurgery & Psychiatry, 2005
- Tissue preconditioning may explain concentric lesions in Baló's type of multiple sclerosisBrain, 2005
- Magnetic resonance imaging as a tool to examine the neuropathology of multiple sclerosisNeuropathology and Applied Neurobiology, 2004
- Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesionAnnals of Neurology, 2004
- Immunopathology of secondary‐progressive multiple sclerosisAnnals of Neurology, 2001
- Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesionsJournal of Neuroimmunology, 1994
- Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complementNature, 1989
- Multiple sclerosis: Capping of surface immunoglobulin G on macrophages engaged in myelin breakdownAnnals of Neurology, 1981
- Immunocytochemical observations on the distribution of myelin‐associated glycoprotein and myelin basic protein in multiple sclerosis lesionsAnnals of Neurology, 1980