Singlet-to-triplet conversion of metastable He atoms at alkali-metal overlayers

Abstract
Energy distributions of electrons emitted from alkali-metal surfaces by impact of metastable He atoms reveal that there is a high probability for transformation of singlet atoms (excitation energy E*=20.6 eV) into triplet atoms (E*=19.8 eV) prior to deexcitation into the ground state. The conversion probability (as expressed by the ratio R of the intensities of valence-band emission due to triplet and singlet He* deexcitation, respectively) increases with increasing alkali-metal coverage on a Ru(0001) substrate, and in turn decreases with increasing oxygen exposure at a fixed alkali coverage. These findings indicate that R is a qualitative measure for the degree of ‘‘metallization’’ of the adlayer. R also increases with temperature due to broadening of the nearest-neighbor distribution whereby, on the average, a larger part of the adlayer becomes metalliclike. For Cs overlayers exhibiting work functions He* (1s12s2) formation as reflected by the R data as well as by the widths of the electron spectra.