Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells.
Open Access
- 1 September 1985
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 101 (3), 838-851
- https://doi.org/10.1083/jcb.101.3.838
Abstract
A panel of monoclonal antibodies was produced against purified microvillus membranes of human small intestinal enterocytes. By means of these probes three disaccharidases (sucrase-isomaltase, lactase-phlorizin hydrolase, and maltase-glucoamylase) and four peptidases (aminopeptidase N, dipeptidylpeptidase IV, angiotension I-converting enzyme, and p-aminobenzoic acid peptide hydrolase) were successfully identified as individual entities by SDS PAGE and localized in the microvillus border of the enterocytes by immunofluorescence microscopy. The antibodies were used to study the expression of small intestinal hydrolases in the colonic adenocarcinoma cell line Caco 2. This cell line was found to express sucrase-isomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV, but not the other three enzymes. Pulse-chase studies with [35S]methionine and analysis by subunit-specific monoclonal antibodies revealed that sucrase-isomaltase was synthesized and persisted as a single-chain protein comprising both subunits. Similarly, lactase-phlorizin hydrolase was synthesized as a large precursor about twice the size of the lactase subunits found in the human intestine. Aminopeptidase N and dipeptidylpeptidase IV, known to be dimeric enzymes in most mammals, were synthesized as monomers. Transport from the rough endoplasmic reticulum to the trans-Golgi apparatus was considerably faster for the peptidases than for the disaccharidases, as probed by endoglycosidase H sensitivity. These results suggest that the major disaccharidases share a common biosynthetic mechanism that differs from that for peptidases. Furthermore, the data indicate that the transport of microvillus membrane proteins to and through the Golgi apparatus is a selective process that may be mediated by transport receptors.This publication has 51 references indexed in Scilit:
- Evidence for biosynthesis of lactase-phlorizin hydrolase as a single-chain high-molecular weight precursorBiochimica et Biophysica Acta (BBA) - General Subjects, 1984
- Human blood group A‐like determinants as marker of the intracellular pools of glycoproteins in secretory and absorbing of A+ rabbit jejunumBiology of the Cell, 1984
- Isolation of (a subunit of) the Na+/D‐glucose contransporter(s) of rabbit intestinal brush border membranes using monoclonal antibodiesFEBS Letters, 1983
- Reduced temperature prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal glycosylationCell, 1983
- Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic ratesNature, 1983
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- Identification and partial purification of a cation-sensitive neutral endopeptidase from bovine pituitariesLife Sciences, 1979
- Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-SepharoseImmunochemistry, 1978
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970
- THERMOPHILIC AMINOPEPTIDASES FROM BACILLUS STEAROTHERMOPHILUS. I. ISOLATION, SPECIFICITY, AND GENERAL PROPERTIES OF THE THERMOSTABLE AMINOPEPTIDASE I *International Journal of Protein Research, 1969