Abstract
A theoretical analysis is carried out to study the influence of an anomalous density-temperature relationship of water on the transient natural convection in horizontal cylinders with wall temperature decreasing at a uniform rate. Numercial solutions are obtained for three cases involving different cooling rates, pipe diameters, and initial uniform water temperatures for temperature conditions between 0 and 7°C. The transient flow and temperature fields, and local and overall heat transfer rates are presented to study the inversion of flow patterns caused by the maximum density at 4°C. The numerical results are compared with the experimental measurements and predictions of a quasi-steady boundary-layer model reported by Gilpin [2], and generally a good agreement is observed. Some implications on the subsequent freezing process are pointed out.