Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling

Abstract
Suppression of the kinase NIK prevents NF-κB signaling. The Cheng and Karin labs demonstrate that adaptor proteins TRAF2 and TRAF3 and ubiquitin ligases cIAP1 and cIAP2 regulate NIK degradation. The adaptor and signaling proteins TRAF2, TRAF3, cIAP1 and cIAP2 may inhibit alternative nuclear factor-κB (NF-κB) signaling in resting cells by targeting NF-κB–inducing kinase (NIK) for ubiquitin-dependent degradation, thus preventing processing of the NF-κB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-κB signaling have remained elusive. We now show that CD40 or BAFF receptor activation result in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2-dependent way owing to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-κB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects.