Effects of streptozotocin‐induced diabetes on phosphoglyceride metabolism of the rat liver

Abstract
We have studied the effect of streptozotocin (SZ)-induced diabetes on fatty acyltransferase and phospholipase enzyme activities involved in the synthesis and degradation of rat liver phosphoglycerides. Neither mitochondrial nor microsomal acyl-CoA: glycerol 3-phosphate acyltransferase (GPAT) activity was altered, although insulin treatment stimulated mitochondrial GPAT activity. However, microsomal acyl-CoA: 1-acylglycerol 3-phosphate acyltransferase (1-acyl-GPAT) activity increased (24–33 per cent, p2 activity and lysophospholipase activity (49–70 per cent, p2 activity 35 per cent higher than controls. Since microsomal 1-acyl-GPAT and GPCAT are known to have higher activity toward unsaturated fatty acyl-CoA donors, the increased GPCAT activity coupled with the decreased lysophospholipase activity and the increased 1-acyl-GPAT activity in diabetes would tend to increase the formation of newly synthesized phospholipids containing unsaturated fatty acids. This mechanism plus the decreased fatty acid desaturase (4) may be the factors which alter the fatty acid composition of phosphoglycerides in diabetic rat liver microsomes.

This publication has 33 references indexed in Scilit: