Conformation of cytochromes. XI. Conformational and functional studies of chemically modified cytochrome c. Nitrated and iodinated cytochromes c

Abstract
The purification of iodinated (E. B. McGowan and E. Stellwagen (1970), Biochemistry 9, 3074) and of nitrated (M. Sokolovsky et al. (1970), Biochemistry 9, 5113) cytochromes c resulted in the recovery from the former preparation of diiododityrosyl-cytochrome c (DIDT-) with modification of Tyr-67 and Tyr-74, and, from the latter, a mononitromonotyrosyl-cytochrome c (MNMT-), with modification of Tyr-67, and mononitrodityrosyl-cytochrome c (MNDT-), with the added modification of Tyr-48. The three purified preparations were conformationally characterized using pH-spectroscopy, circular dichroism, thermal denaturation, reducibility with ascorbate, autoxidation with molecular oxygen, and binding with CO. These results are related to the two aspects of biological function, reducibility, measured by NADH-cytochrome c reductase, and oxidizability, with cytochrome c oxidase, as well as to structure-function relationships in the protein. MNMT-cytochrome c was found to be, structurally and conformationally, a single isomer, reducible with ascorbate, with a small, but definite affinity for both oxidation with molecular oxygen and binding of CO. Conformationally, in both valence states of the metal atom, it represents a molecular form with native-like conformation with small but definite perturbations in the immediate vicinity of the heme group, reflected by the destabilization of the Met-80-S-Fe linkage. MNMT-ferricytochrome c exhibits a pK of 6.2 for the transformation of the low-spin, native-like spectral form II containing the 695-nm band to form lacking lacking the 695-nm band. The isomerization at pK = 6.2, when analyzed in terms of the isomerization of the native protein with a pK of 9.2 and the nature of the group involved, indicates that Tyr-67 is not involved in the isomerization of the modified preparation, and possibly not in the native protein as well. In terms of biological function, the partial derangement of redecibility (24%) and the unaltered oxidizability point to the functional significance of Tyr-67, and provide another example of selectivity between the two aspects of physiological functional function, in agreement with the two-function, two-path operational model of the protein. The MNDT- and DIDT-ferricytochromes c exhibited physicochemical properties indicative of gross derangement of both the conformation of the protein as well as of the coordination configuration of the metal atom. The complete inability to accept an electron from NADH-cytochrome c reductase in both cases, and the retention of 50% of the oxidizability property of DIDT-cytochrome c, were interpreted to be the result of conformational derangement, rather than the added modification of Tyr-48 or of Tyr-74.