Evolutionary transience of hypervariable minisatellites in man and the primates

Abstract
Using PCR, two minisatellite loci showing extreme repeat-unit copy-number variation in humans have been characterized in great apes and monkeys. In contrast to humans, minisatellite locus MS32 is monomorphic with only 3-4 diverged repeat units in great apes, Old World and New World monkeys, this organization presumably representing the relatively stable ancestral precursor state of the human hypervariable locus. Similarly, minisatellite MS1 shows extreme repeat-copy-number variability in man compared with low copy number and minimal variability in great apes. Analysis of variant repeat units shows that the 5$^{\prime}$ and 3$^{\prime}$ regions of MS1 are relatively stable in great apes and man, and that variability in man is confined to the central region of the minisatellite. In contrast to the great apes, MS1 is highly variable in Old World monkeys. These results, as well as computer simulations of minisatellite evolution based on known mutation rates, show that short minisatellites are stable within the genome, and that the degree of polymorphism at a given locus can change dramatically over a short period of evolutionary time. The ability of hypervariable minisatellites to detect highly informative loci by cross-species hybridization is therefore largely unpredictable.