Grand-canonical simulations of solvated ideal fermions. Evidence for phase separation
- 15 December 1992
- journal article
- research article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 97 (12), 9249-9257
- https://doi.org/10.1063/1.463300
Abstract
A novel scheme to perform finite‐temperature grand‐canonical simulations of ideal fermions in arbitrary external potentials is introduced. This scheme is based on the evaluation of the grand‐canonical function of lattice fermions. As an application, we present results on the phase behavior of a mixture of fermions and hard spheres. A simple analytic model of solvated fermions in a hard‐sphere fluid is also studied. We address here the possibility of phase separation between a pure delocalized phase of fermions and a homogeneous solution of solvated fermions. These calculations indicate that the homogeneous phase is expected to be stable only at low fermion concentration and low thermal wavelengths. The fermion simulations indicate that such phase separation is a likely scenario.Keywords
This publication has 20 references indexed in Scilit:
- Path-integral calculations of normal liquidPhysical Review Letters, 1992
- Quantum path integral extension of Widom’s test particle method for chemical potentials with application to isotope effects on hydrogen solubilities in model solidsThe Journal of Chemical Physics, 1992
- Structure and dynamics of bipolarons in liquid ammoniaPhysical Review Letters, 1992
- Improved methods for path integral Monte Carlo integration in fermionic systemsThe Journal of Chemical Physics, 1992
- Development, justification, and use of a projection operator in path integral calculations in continuous spaceThe Journal of Chemical Physics, 1991
- Computer simulation of polymer-induced clustering of colloidsPhysical Review Letters, 1991
- Electron pairing in dilute liquid metal-metal halide solutionsThe Journal of Physical Chemistry, 1987
- The phase diagram and transport properties for hydrogen-helium fluid planetsThe Astrophysical Journal Supplement Series, 1977
- Three-Particle Effects in the Pair Distribution Function forGasPhysical Review B, 1968
- Path-Integral Calculation of the Two-Particle Slater Sum forPhysical Review B, 1966