The Maximum Number of Strongly Connected Subtournaments*

Abstract
In the ranking of a collection of p objects by the method of paired comparisons, a measure of consistency is provided by the relative number of transitive (or consistent) triples and cyclic (or inconsistent) triples. This point of view was introduced by Kendall and Babington Smith [4]. They found a formula for the maximum number of cyclic triples, thereby determining the greatest inconsistency possible. The purpose of this note is to extend the result to obtain the maximum number of "strongly connected" collections of n objects among the given p objects.

This publication has 1 reference indexed in Scilit: