A Rapid and General Assay for Monitoring Endogenous Gene Modification
Top Cited Papers
- 25 June 2010
- book chapter
- Published by Springer Nature
- Vol. 649, 247-256
- https://doi.org/10.1007/978-1-60761-753-2_15
Abstract
The development of zinc finger nucleases for targeted gene modification can benefit from rapid functional assays that directly quantify activity at the endogenous target. Here we describe a simple procedure for quantifying mutations that result from DNA double-strand break repair via non-homologous end joining. The assay is based on the ability of the Surveyor nuclease to selectively cleave distorted duplex DNA formed via cross-annealing of mutated and wild-type sequence.Keywords
This publication has 22 references indexed in Scilit:
- Rapid “Open-Source” Engineering of Customized Zinc-Finger Nucleases for Highly Efficient Gene ModificationMolecular Cell, 2008
- Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleasesNature Biotechnology, 2008
- Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleasesNature Biotechnology, 2008
- Targeted gene inactivation in zebrafish using engineered zinc-finger nucleasesNature Biotechnology, 2008
- Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleasesProceedings of the National Academy of Sciences, 2008
- An improved zinc-finger nuclease architecture for highly specific genome editingNature Biotechnology, 2007
- Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design toolNucleic Acids Research, 2007
- Targeted gene addition into a specified location in the human genome using designed zinc finger nucleasesProceedings of the National Academy of Sciences, 2007
- Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cellsProceedings of the National Academy of Sciences, 2006
- Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleasesNucleic Acids Research, 2006