Abstract
The defining characteristic of a nanomaterial is that its properties vary as a function of its size. This size dependence can be clearly observed in single-walled carbon nanotubes, where changes in structure at the atomic scale can modify the electronic and optical properties of these materials in a discontinuous manner (for example, changing metallic nanotubes to semiconducting nanotubes and vice versa). However, as most practical technologies require predictable and uniform performance, researchers have been aggressively seeking strategies for preparing samples of single-walled carbon nanotubes with well-defined diameters, lengths, chiralities and electronic properties (that is, uniformly metallic or uniformly semiconducting). This review highlights post-synthetic approaches for sorting single-walled carbon nanotubes - including selective chemistry, electrical breakdown, dielectrophoresis, chromatography and ultracentrifugation - and progress towards selective growth of monodisperse samples.