Abstract
Methyl benzimidazol-2-yl-carbamate (MBC), at a concentration of 100 microM, has a pronounced effect on the growth of Saccharomyces cerevisiae, resulting in the accumulation of cells as large doublets. We have determined a specific execution point for the effect of MBC on the yeast cell cycle, and have shown that this execution point is between the cycle events of spindle pole body duplication and spindle pole body separation. An ultrastructural examination of the MBC-treated cells revealed the absence of cytoplasmic and spindle microtubules. MBC treatment also produced an altered spindle pole body morphology, causing the disappearance of the outer component. Nuclear size was also markedly increased in the MBC-induced doublet cells, although the septa were completely absent from these doublet cells. It is proposed that MBC inhibits microtubule polymerization, rather than causing the depolymerization of stable microtubules.