Post-mating Gene Expression Profiles of Female Drosophila melanogaster in Response to Time and to Four Male Accessory Gland Proteins
- 1 July 2008
- journal article
- Published by Oxford University Press (OUP) in Genetics
- Vol. 179 (3), 1395-1408
- https://doi.org/10.1534/genetics.108.086934
Abstract
In Drosophila melanogaster, the genetic and molecular bases of post-mating changes in the female's behavior and physiology are poorly understood. However, DNA microarray studies have demonstrated that, shortly after mating, transcript abundance of >1700 genes is altered in the female's reproductive tract as well as in other tissues. Many of these changes are elicited by sperm and seminal fluid proteins (Acps) that males transfer to females. To further dissect the transcript-level changes that occur following mating, we examined gene expression profiles of whole female flies at four time points following copulation. We found that, soon after copulation ends, a large number of small-magnitude transcriptional changes occurred in the mated female. At later time points, larger magnitude changes were seen, although these occurred in a smaller number of genes. We then explored how four individual Acps (ovulin, Acp36DE, Acp29AB, and Acp62F) with unique functions independently affected gene expression in females shortly after mating. Consistent with their early and possibly local action within the female, ovulin and Acp36DE caused relatively few gene expression changes in whole bodies of mated females. In contrast, Acp29AB and Acp62F modulated a large number of transcriptional changes shortly after mating.Keywords
This publication has 82 references indexed in Scilit:
- Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storageJournal of Insect Physiology, 2006
- Evidence for structural constraint on ovulin, a rapidly evolving Drosophila melanogaster seminal proteinProceedings of the National Academy of Sciences, 2006
- Mating-responsive genes in reproductive tissues of femaleDrosophila melanogasterProceedings of the National Academy of Sciences, 2006
- Allocrine Modulation of Feeding Behavior by the Sex Peptide of DrosophilaCurrent Biology, 2006
- Two cleavage products of the Drosophila accessory gland protein ovulin can independently induce ovulationProceedings of the National Academy of Sciences, 2005
- Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogasterProceedings of the National Academy of Sciences, 2003
- The sex peptide of Drosophila melanogaster: Female post-mating responses analyzed by using RNA interferenceProceedings of the National Academy of Sciences, 2003
- Statistical significance for genomewide studiesProceedings of the National Academy of Sciences, 2003
- The rapid evolution of reproductive proteinsNature Reviews Genetics, 2002
- A male accessory gland peptide that regulates reproductive behavior of female D. melanogasterCell, 1988