Cytochalasin releases mRNA from the cytoskeletal framework and inhibits protein synthesis.

Abstract
Cytochalasin D was shown to be a reversible inhibitor of protein synthesis in HeLa cells. The inhibition was detectable at drug levels typically used to perturb cell structure and increased in a dose-dependent manner. The drug also released mRNA from the cytoskeletal framework in direct proportion to the inhibition of protein synthesis. The released mRNA was unaltered in its translatability as measured in vitro but was no longer translated in the cytochalasin-treated HeLa cells. The residual protein synthesis occurred on polyribosomes that were reduced in amount but displayed a normal sedimentation distribution. The results support the hypothesis that mRNA binding to the cytoskeletal framework is necessary although not sufficient for translation. Analysis of the cytoskeletal framework, which binds the polyribosomes, revealed no alterations in composition or amount of protein as a result of treatment with cytochalasin D. Electron microscopy with embedment-free sections shows the framework in great detail. The micrographs revealed the profound reorganization effected by the drug but did not indicate substantial disaggregation of the cytoskeletal elements.