A superconducting bolometer with strong electrothermal feedback

Abstract
We present a theoretical analysis and experimental evaluation of a transition-edge superconducting bolometer for detecting infrared and millimeter waves. The superconducting film is voltage biased and the current is read by a superconducting quantum interference device ammeter. Strong electrothermal feedback maintains the sensor temperature within the transition, gives a current responsivity that is simply the inverse of the bias voltage, and reduces the response time by several orders of magnitude below the intrinsic time constant C/G. We evaluated a voltage-biased bolometer that operates on the Tc∼95 mK transition of a tungsten film with a thermal conductance of G∼1.2×10−9 W/K. As expected, the electrical noise equivalent power of 3.3×10−17/W√Hz is close to the thermal fluctuation noise limit and is lower than that of other technologies for these values of G and temperature. The measured time constant of 10 μs is ∼100 times faster than the intrinsic time constant.