Microspectrofluorometry of carcinogens in living cells

Abstract
A microspectrofluorometric approach has been used to follow the changes undergone by the carcinogen benzo(a)pyrene in malignant L cells, inducible Buffalo rat liver (BRL) cells and oncogenic mouse embryo C3H/10 T 1/2, clone 8 (CCL 226) cells. Since it is known that benzo(a)pyrene (BP) is converted metabolically to at least 40 metabolites, including phenols, epoxides, quinones, dihydrodiols, diol epoxides, and water-soluble conjugates, the interpretation of blue- and red-spectral shifts in fluorescence emission observed in BP-treated cells, compared to the original BP emission, undoubtedly presents considerable difficulties, but a certain number of facts clearly emerge. The sequence of bluered shifts expressive of intracellular interactions and detoxification of the carcinogen is accelerated in the induced BRL compared to noniduced, and it is also generally accelerated in the malignant and inducible lines compared to the oncogenic line. The detection of highly reactive molecules (? of ultimate carcinogens) representing a small fraction of bulk fluorescence, still remains elusive, but two promising approaches are described: the use of phase-specific fluorescence quenchers which enable us to probe for the presence of metabolites in aqueous, hydrophobic or membrane phases of the cell, and the matrix analysis based on plotting of excitation-emission at different wavelengths for resolution of complex spectra. The former approach has enabled some separation or enhancement of red-blue emissions, and the second has helped to differentiate between emission of BP per se and its intracellular conversion products. Finally, observations at nuclear and cytoplasmic sites open the possibility of studying carcinogen interactions at different target sites.