Rapid nuclear accumulation of injected oligodeoxyribonucleotides.

  • 1 December 1990
    • journal article
    • Vol. 2 (12), 1091-100
Abstract
The intracellular transport and fate of nucleic acids is poorly understood. To study this process, we injected fluorescent oligodeoxyribonucleotides (oligos) into the cytoplasm of CV-1 epithelial cells and primary human fibroblasts. Rapid nuclear accumulation was found with the phosphodiester (PD), phosphorothioate (PT), and methylphosphonate (MP) forms of a 28-mer oligo complimentary to the rev mRNA of the human immunodeficiency virus type 1. Migration of the oligos in the cytoplasm was slower than diffusion of a coinjected dextran, but the oligos freely diffused into the nucleus. Nuclear incorporation was temperature but not energy dependent. The intranuclear distribution of the oligos was influenced by the chemistry of internucleoside linkages. The PD oligos and, to a lesser extent, the PT oligos colocalized with small nuclear ribonucleoproteins (snRNPs), whereas the MP oligos colocalized with concentrated regions of genomic DNA. These data have important implications for our understanding of the transport and accumulation of exogenous nucleic acids in mammalian nuclei, and the assay described could potentially be used for testing the efficacy of oligos designed as therapeutic agents.