Structure within eukaryotic cytoplasm and its relationship to glycolytic metabolism

Abstract
Taken together, the results reviewed here indicate that both structural proteins and enzymes exist in a relatively mobile, uncomplexed form and in a relatively immobile form, complexed with the matrix. The relative amounts of free and complexed forms of each protein are dependent upon the local concentrations of both small molecules and other macromolecules and hence may vary in time and space throughout the cell. Free and cytomatrix-bound enzymes exchange rapidly, while free and cytomatrix-bound structural proteins exchange more slowly. These two distinct time scales suggest that the slowly exchanging structural proteins form the core of fibrous structural elements--having many stabilizing intermolecular contacts with near neighbours--whereas the more rapidly exchanging enzymes adsorb to the surface of the structural elements and have fewer near neighbour contacts. The hierarchical nature of these associations is depicted schematically in Figure 3. Metabolism is proposed to proceed primarily via transport of small metabolites rather than by transport of enzymes, which may be organized in functional clusters to facilitate, metabolic regulation.

This publication has 118 references indexed in Scilit: