Evolutionary Divergence of an Elongation Factor 3 from Cryptococcus neoformans

Abstract
Elongation factor 3 (EF3) is considered a promising drug target for the control of fungal diseases because of its requirement for protein synthesis and survival of fungi and a lack of EF3 in the mammalian host. However, EF3 has been characterized only in ascomycete yeast. In order to understand the role of EF3 in a basidiomycete yeast, we cloned the gene encoding EF3 from Cryptococcus neoformans ( CnEF3 ), an important fungal pathogen in immunocompromised patients, including those infected with human immunodeficiency virus. CnEF3 was found to encode a 1,055-amino-acid protein and has 44% identity with EF3 from Saccharomyces cerevisiae ( YEF3 ). Expressed CnEF3 exhibited ATPase activity that was only modestly stimulated by ribosomes from S. cerevisiae . In contrast, CnEF3 showed tight binding to cryptococcal ribosomes, as shown by an inability to be removed under conditions which successfully remove Saccharomyces EF3 from ribosomes (0.5 M KCl or 2 M LiCl). CnEF3 also poorly complemented a YEF3 defect in a diploid null mutant and two temperature-sensitive mutants which have been shown previously to be complemented well by EF3 from other ascomycetes, such as Candida albicans . These data clearly identify the presence of a functioning EF3 in the basidiomycete yeast C. neoformans , which demonstrates an evolutionary divergence from EF3 of ascomycete yeast.