Free Ammonia Inhibition of Algal Photosynthesis in Intensive Cultures

Abstract
The effect of free NH3 inhibition on short-term photosynthesis was investigated in three microalgal species: the freshwater chlorophyte Scenedesmus obliquus, the marine diatom Phaeodactylum tricornutum and the marine chlorophyte Dunaliella tertiolecta. By performing a series of assays at various concentrations of added NH4Cl and culture pH, we demonstrated that the inhibitory compound was free NH3 and that pH played no role in determining the magnitude of inhibition, other than in establishing the degree of dissociation of nontoxic NH4+ to toxic NH3. When corrections were made for pH, all three species displayed the same sigmoidal response curve to free NH3 concentration; 1.2 mM NH3 led to 50% reduction in photoassimilation of 14C. Based on literature values, some marine phytoplankton appear to be significantly more sensitive to free NH3 than were the test species, which are noted for their excellent growth characteristics. However, the combination of low algal biomass and strong pH buffering commonly found in most marine and many freshwater environments probably limits the possibilities for NH3 toxicity to low alkalinity freshwaters and intensive algal cultures in which NH4+ is the main source of N. Such conditions occur commonly in algal wastewater treatment systems.