Abstract
▪ Abstract The 500 cone snail species (Conus) use complex venoms to capture prey, defend against predators and deter competitors. Most biologically active venom components are small, highly structured peptides, each encoded by a separate gene. Every Conus species has its own distinct repertoire of 100–200 venom peptides, with each peptide presumably having a physiologically relevant target in prey or potential predators/competitors. There is a remarkable interspecific divergence observed in venom peptide genes, which can be rationalized because of biotic interactions that are species specific. The peptide families/subfamilies characteristic of clades of related Conus species are potentially useful clade markers and can be used to indicate common biological mechanisms characterizing that clade. By knowing both the distribution and the physiological function of venom peptides, a type of reverse ecology becomes possible; the peptides in a Conus venom are a molecular readout of the biotic interactions of a sp...