DNA Polymerase β: Multiple Conformational Changes in the Mechanism of Catalysis
- 1 September 1997
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 36 (39), 11891-11900
- https://doi.org/10.1021/bi963181j
Abstract
Stopped-flow fluorescence assay was applied to identify conformational changes in the catalytic cycle of DNA polymerase beta (Pol beta), using a synthetic DNA primer/template containing 2-aminopurine (2-AP) at the template position opposite the incoming dNTP. Two phases of fluorescence change were observed in the stopped-flow fluorescence assay of the incorporation of the correct nucleotide dTTP. The rate of the slow phase corresponds to that of product formation. This slow phase was identified as the result of a rate-limiting conformational change step before chemistry because this slow phase was also observed with a dideoxynucleotide at the 3' end of the primer which prevents chemical bond formation. The fast phase was also attributed to a conformational change step since its dependence on [dTTP] is hyperbolic. The rates of the two phases and their dependence on [dTTP] and [Mg2+] suggest that the fast conformational change is induced by the binding of MgdNTP and the slow conformational change is induced by the binding of the catalytic Mg2+ ion. The same biphasic kinetics with different rates were also observed with the thio analog dTTPalphaS and incorrect nucleotides dATP, dGTP, and dCTP. The structural nature for the two conformational changes has been discussed in relation to the available structural information of this enzyme. The results could help to explain how a polymerase controls and achieves its fidelity with a multiple conformational change mechanism.Keywords
This publication has 7 references indexed in Scilit:
- DNA polymerase β: analysis of the contributions of tyrosine-271 and asparagine-279 to substrate specificity and fidelity of DNA replication by pre-steady-state kineticsBiochemical Journal, 1997
- Difluorotoluene, a Nonpolar Isostere for Thymine, Codes Specifically and Efficiently for Adenine in DNA ReplicationJournal of the American Chemical Society, 1997
- Multiple RNA Polymerase Conformations and GreA: Control of the Fidelity of TranscriptionScience, 1993
- CONFORMATIONAL COUPLING IN DNA POLYMERASE FIDELITYAnnual Review of Biochemistry, 1993
- FIDELITY MECHANISMS IN DNA REPLICATIONAnnual Review of Biochemistry, 1991
- The structure of guanosine-thymidine mismatches in B-DNA at 2.5-A resolution.Journal of Biological Chemistry, 1987
- Catalysis, binding and enzyme-substrate complementarityProceedings of the Royal Society of London. B. Biological Sciences, 1974